If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(c^2+8c-20)/(c-2)=0
Domain of the equation: (c-2)!=0We multiply all the terms by the denominator
We move all terms containing c to the left, all other terms to the right
c!=2
c∈R
(c^2+8c-20)=0
We get rid of parentheses
c^2+8c-20=0
a = 1; b = 8; c = -20;
Δ = b2-4ac
Δ = 82-4·1·(-20)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-12}{2*1}=\frac{-20}{2} =-10 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+12}{2*1}=\frac{4}{2} =2 $
| -2x^2+4=6x^2-5x | | (x+1)(x+2)(x+3)(x+3)(x+4)(x+5)=360 | | 1.16x=375 | | 250-12.50x=100-5x | | 5x-49=26 | | 72=3x=27 | | 5x-7=-4x-11 | | 170=70-v | | 17+8x=21+7x | | 2b-8=b+10 | | 86-x=17 | | 124-x+8x+43=180 | | 26q=754 | | 7x+9x+9-23=180 | | 64-3x=59-2x | | 9x+10x+23+6=180 | | 125+c/5=41 | | 2x-100=10x | | 36/x=0.03 | | -2(-2x-1)-2=-(9x-3)-8 | | 0=-16t^2+41 | | 745+x=2779 | | x+140+132=180 | | 22=15t+4.9t^2 | | 2x-10=-10x+5 | | 3.3x-10=5.8x+5 | | 7(x-1)+4(3-x)=26 | | 6x+25=120 | | 126=-14m | | 40=z/0.3 | | 5(2p-1)+2(6-3p)=12 | | -12+4.7k=+11.5 |